Consumer Applications

THIS PROJECT WAS STARTED

WHEN WE ORIGINALLY NEEDED

A WAY TO GRAPHICALLY DISPLAY

A TEMPERATURE PROFILE FOR A
REFLOW OVEN. WE DETERMINED
THAT OPTREX HAD A REASONABLY
SIZED, VALUE PRICED LCD THAT
COULD BE USED FOR A PROJECT
LIKE THIS. WE ALSO HAD EXPERIENCE
WITH USING ATMEL AVRS FOR
SOLVING DESIGN PROBLEMS THAT
REQUIRED THE USE OF A MICRO.

IT SEEMED THAT THE COMBINATION
OF THE OPTREX DISPLAY WITH AN
ATMEL AVR WAS A VIABLE, COST
EFFECTIVE SOLUTION FOR SHOWING
TEMPERATURE ON A DISPLAY.

www.afmel.com

Atmel AVR Control of an

Optrex Graphics LCD

By: Bob Proctor, Tim Davis, Alan Helfinstine

Project History

We have done four different revisions of PCBs for this
project as we have constantly refined what we have. A
picture showing the display mounted on the PCB is
given in Figure 1. The goal has been to build some-
thing that not only we will use but others could use as
well. The project initially was started by the three
authors emailing each other and refining what we
thought would be needed for this design. Each of us
works remotely from each other so we try and be con-
cise with our design recommendations. After several
email iterations, a set of requirements was written and
we were ready to start. We went ahead and ran the
first revision of the PCB. The system worked on the
first revision. The following revisions were used to go
after the form factor by making the component side
low profile and to use less expensive components in
the design.

A 9-pin RS232 connector and serial communication
level translator IC were used to allow the LCD to be
used as an appliance where graphic patterns could be
built and downloaded to the display. In our initial appli-
cation for the reflow oven, the key temperature points
along the profile versus time graph could be down-
loaded.

The schematic shown in figure 2 shows that a lab sup-
ply is used for the LCD biasing. A set of externally gen-
erated on board power supplies can also be built or one
can use the charge pumps built into the LCD. Our pc
board left vacant component pads for the charge pump
caps to be installed if we ever wanted to use this power
mode. PCB pad arrangement allows for both 1/7 and
1/9 display contrast options. The part of the circuit
design that provides the 1/7 or 1/9 bias is the voltage
divider between +5V and V- as shown in the schemat-
ic. The divider taps supply bias to the LCD. Our design
used the 1/9 contrast option.

MECHARTRONI~ LLC.

Microcontioller
and Grarhics LCD
Demonstrator Board

(c 2886
All Rights Reserved.

Figure 1: LCD controller in operatlon

Details in the Hardware

Some of the key features of the hardware include being
able to drive the LCD display in either parallel or serial
communication. Work done for this article used paral-
lel communication. Options were left in the circuit in
order to allow for communicating with the display using
serial communication.

Two switches were used as input in order to change
between different display screens that were designed.
A red reset switch was also provided. A 6-pin 0.1"
connector using the Atmel programming tools standard
pinout was used for ISP access. The intensity of the
backlight can be controlled by using a PWM signal

 poge 32

‘€onsumer Applications

2.1mm PWR
connector

To Regulated
Wall Adpater

For an OPTREX LCD
LCD Controller

10uF
|+
+5V
. 4 4 %_ 4.70F
54| 6363 61 6q 59 59 59 59 54 54 59 5¥ 51 54 4 6on -
X Connector
T 48 < o T
i P L o
RXDO/PDI pad = s
TXDO/PDO pas |45 3
45 o| R
PE2 PA6 | o
PE3/0C3A pa7 B4 i gz
PE4/0C3B e E=8 7 o1
ES pe7 (g <
FES [KA b2
oer ATMEGA128 e s : o| o
0D4
s Y EE] M 1 gg
SCK pc3 28 -
= > DB/
o e =]; g:/st ;
Slo.1
MISO o E +5 .0114 0.1UF
o ES
T PB4) - - 1)
3 PBS/OCTA o1 B -
h s PB5/0C1B L EER 8/ o
ST >4 o carez
'] 1 o|
IRED P 21 IEEEHE 79 & car-
R Q| caez-
v o Q|21car2s
° lof2 v
ol v
/9 £ v3
v4
oo, 55, O
22pF 22pF o] Ve
SHG Imm - gmpo
I_W.-' ~-8.3V QZ« VR
b3 ©|28c85
NTD20NOS 5.23!«: e
]7 %30»&?5 (Use Ext Pwr)

~ -8.3V generated from LAB Supply

Figure 2: Schematic of LCD driver PCB

controlling the gate of a n channel mosfet which turns
on the LED backlight for the LCD.

The power supply for the system was derived from a
7.5V wall adapter that powers a 5V regulator. An exter-
nal 16 MHz crystal was used for the system clock. A
red LED was also provided that allows for either a
“power on” or a “microprocessor is alive” indicator.

The system used a rotary backlock 30-pin zif socket to
plug in the flex cable from the LCD. This allowed for
both Optrex models F-515X and F-518X graphic LCDs
to be tested and shown to work with our system.

PCB pads were provided for an optional breakout con-
nector to allow for easy direct connection to the cable
of the LCD. This allowed for monitoring or for driving
the LCD signals. This breakout connector can be used
for logic analyzer or oscilloscope access.

www.atmel.com

Atmel AVR Studio was used to design the code for this
project. Both a STK500 and an AVR ISP MKIl were
used to program the controller project through the ISP
connector. Boards were built with either the Mega128
or the Mega64 AVR installed on them.

Details in the Software

We planned our software graphics functions to fit the
way the Optrex module handles the data. It takes data
one byte at a time, to represent dots in rows that are 8
pixels high. 128 bytes are needed to fill in a horizontal
line of 8 dots high by 128 dots wide. Optrex refers to
this as a page. There are 8 pages to be written to the
screen to fill in all 64 vertical dots. As it tuns out, the
number of bytes to represent all the pixels is 128 hor-
izontal dots X 8 pages X 8 dots = 1024 bytes of data.
We used SRAM in the AVR as a two-dimensional array
to store all the screen data as a screen (full-page)
buffer. The idea is that we could take our time filling in
the screen data into the buffer, then quickly update the

screen from the buffer, keeping screen transitions very
clean.

Once we had our screen buffer in place, we wrote rou-
tines to be able to draw individual dots on the screen,
addressed by dot rows and columns. Once that
worked, it was easy to add another function to draw
lines, using the dot drawing routine. All the graphics
functions build on the basic dot drawing routine.

To allow fancy overlapping, we allowed the dot drawing
routine to do either set a pixel, clear a pixel, or exclu-
sive OR a pixel. That functionality was passed upwards
into the other functions that used the dot drawing rou-
tine.

In order to show text, we had to build a font and find a
way to convey that to the screen in different rotations.
Since the Optrex version of a page is 8 pixels high, we
chose a font that is also the same height. Actually, we

page 33

successfully did two different fonts, 5x8 and 8x8. The
classic 5x8 font is actually 5 pixels wide, plus a space
between characters. And the true height of each char-
acter is only 7 pixels, leaving a blank line at the bottom
to prevent smearing in the character below. Still, the
pixels were created in a 5 byte form, each byte being
a vertical 8-bit slice of the character. We wrote a char-
acter drawing routine which fit the font into places that
are 6 pixels wide. The routine allows us to draw the 5
bytes anywhere on the screen according to a charac-
ter position rather than a pixel position. This makes it
fit much better into the displays 8-bit high format.
Once the character drawing function was created, we
built on other functions to print strings.

www.atmel.com

To draw text rotated by 90 degrees required some
tricks as to how we read the data from the font file and
wrote it into the buffer. Once we solved this, it worked
just as well as the standard font. We only did this for
the 5x8 font, but the same pattern could be applied to
others.

As we mentioned, the screen buffer was 1 kbytes long;
we needed a routine to takes these bytes and move
then onto the screen quickly. Since the data in the
array was two-dimensional, and formatted to "look"
like the screen data, it was very easy to simply read
each row of 128 bytes, send each byte to the screen,
updated the screen "page", then continue with the next

€Consumer Applications

row of bytes. After 8 rows, the screen update was fin-
ished.

Another function we needed was to fill the buffer with
data. Typically used for erasing a page by writing all
zeros, we gave it the capability to fill the buffer with any
byte value. This function is also very straightforward,
and moves very quickly in SRAM, so it allowed us to
erase a screen, fill in new data, and then update the
screen dozens of times per second (faster than the lig-
uid crystal is able to respond).

Another advantage to having our screen data in the
buffer is to allow shifting in either horizontal or vertical
directions, or both. In those cases, a small buffer was
used to copy some of the screen buffer and write it into
a new position in the screen buffer. Animated graphics
become possible whether the whole screen, or part of
it. We tried it for whole screen moving, but we realize
that it would work for small areas just as well, for mov-
ing icons or sprites.

Having high-level graphics functions that allowed us to
draw lines, based on simple begin points and end
points, gave us the foundation to do other specialized
graphics functions. Line graphs, including smooth
sinusoidal lines, can be made as a combination of
many small straight lines.

Cool Things That We Found to Do with it

We began to write routines to graph basic functions,
and finally to read in A/D data and show it on the
screen as an oscillograph. The important factor here
was to buffer our samples, then to draw them into the
buffer, and finally to update the screen. Doing this, we
were able to get very fast samples and nice analog
data capture up on the screen quickly. The important
thing was to use a consistent sampling clock. If we
tried to draw the lines between samples, some sam-
ples were delayed, and that messed up our time refer-
ence.

Conclusions - Where to Go from Here

As we move forward, we are looking for more applica-
tions for this LCD controller. We are also interested in
trying other Optrex display sizes besides the one
described in this article.

If we move to larger displays and AVRs with many
resources, we should be able to do real-time measure-
ments of voltage and enable post processing of these
waveforms to display information such as can be found
with an oscilloscope or spectrum analyzer.

We enjoy the challenge that these types of projects
offer. In the not too distant past, projects such as these
weren’t possible without the capabilities that the Atmel
AVRs now offer as well as the lower cost LCDs that
have become available.

